Network inference

Gaussian Graphical models
- Generative model of the signal
- Interaction between regions estimated by partial correlation
- Amounts to covariance estimation

An estimation problem
- Many brain regions, short time series
- Inter-subject variability prevents data accumulation

\[\ell_{21} \text{ penalization for inverse covariance} \]

\[
\left(\hat{K}^{(s)}_{\ell_{21}} \right)_{s=1..N} = \text{arg min} \sum_{s=1}^{S} \left(\text{tr}(K^{(s)} S_{\text{sample}}^{(s)}) - \log \det K^{(s)}) + \lambda \sum_{i \neq j} \|K^{(s)}_{ij}\|_2 \right)
\]

- Joint sparsity: pattern shared in population (similar to group-lasso)
- Convex optimization with cyclical coordinate descent on Choleski decompositions of the precision matrices [A. Rothman, 2008]

Subject-level edge values

Group-level edge selection

Experimental validation

Use a full-brain atlas to extract time-series
- Probabilistic atlas of anatomical structures (poster 335)
- 137 cortical and sub-cortical regions

Resulting sparse precision matrices

Cross validation results

Comparison with other covariance estimation method:
- LW = Ledoit-Wolf: non-sparse shrinkage
- \(\ell_1 = \) Normal sparse inverse covariance

<table>
<thead>
<tr>
<th></th>
<th>Using subject data</th>
<th>Uniform group model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MLE</td>
<td>LW</td>
</tr>
<tr>
<td>Filling factor</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Communities</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Modularity</td>
<td>.07</td>
<td>.07</td>
</tr>
</tbody>
</table>

Reference:
G. Varoquaux et al., Brain covariance selection: better individual functional connectivity models using population prior, Adv. NIPS 2010
http://books.nips.cc/nips23.html