Mixing in viscous flows The inhibiting role of phase space structures at the walls

E. Gouillart¹, O. Dauchot¹, B. Dubrulle¹, F. Daviaud¹, J.-L. Thiffeault², S. Roux³ ¹ Groupe Instabilités et Turbulence, SPEC, CEA Saclay

² Department of Mathematics, University of Madison, WI, USA, ³ LMT, ENS Cachan

Mixing of viscous fluids: motivations and approach

- Mixing is ubiquitous in industry: food processing, microfluidics, glass melting
- Framework = chaotic advection: chaotic trajectories ⇒ good mixing. Phase space = real space !

How fast can you mix ?

Quantitative dye mixing experiments Closed and open flows

Closed flows: phase portrait at the wall determines mixing dynamics

Full chaotic region: walls \Rightarrow algebraic mixing

- Full chaotic region
- Stagnation (parabolic) point on the wall
- No-slip condition ⇒ poorly-mixed fluid slowly reinjected in the bulk.

Can we "protect" the chaotic region ?

- Exponential mixing
- Permanent pattern: eigenmode

Open flows: different residence-time distributions for different phase portraits

- Chaotic region protected from the walls
- Parallel exponential evolution for all moments: eigenmode

Stagnation points on walls
Deviation from the eigenmode: long residence times (walls).

