Large-scale functional-connectivity graphical models for individual subjects using population prior

<u>G. VAROQUAUX</u>^{†‡*}, A. GRAMFORT^{†*}, J.B. POLINE^{*}, B. THIRION^{†*} gael.varoquaux@normalesup.org

🌵 Inserm

Network inference

Gaussian Graphical models

 Generative model of the signal
Interaction between regions estimated by partial correlation

Amounts to covariance estimation

An estimation problem

Many brain regions, short time series
Inter-subject variability prevents data accumulation

ℓ_{21} penalization for inverse covariance

$$\hat{\mathbf{K}}_{\ell_{21}}^{(s)} \Big)_{s=1..S} = \underset{\mathbf{K}^{(s)} \succ 0}{\operatorname{argmin}} \sum_{s=1}^{S} \left(\operatorname{tr}(\mathbf{K}^{(s)} \, \hat{\boldsymbol{\Sigma}}_{\mathsf{sample}}^{(s)}) - \log \det \mathbf{K}^{(s)} \right) + \lambda \sum_{i \neq j} \|\mathbf{K}_{ij}^{(\cdot)}\|_{2}$$

Joint sparsity: pattern shared in population (similar to group-lasso)

$$\sum_{i \neq j} \|\mathbf{K}_{ij}^{(\cdot)}\|_2 = \sum_{i \neq j} \sqrt{\sum_{s=1}^{S} (\mathbf{K}_{ij}^{(s)})^2}$$

Convex optimization with cyclical coordinate descent on Choleski decompositions of the precision matrices [A. Rothman, 2008]

Group-level edge selection

Experimental validation

Use a full-brain atlas to extract time-series

Probabilistic atlas of anatomical structures (poster 335)

■137 cortical and sub-cortical regions

Resulting sparse precision matrices

Cross validation results

Comparison with other covariance estimation method:

LW = Ledoit-Wolf: non-sparse shrinkage

$\mathbf{I}_1 = Normal$ sparse inverse covariance									
	Using subject data				Uniform group model				
	MLE	LW	ℓ_2	ℓ_1	MLE	LW	ℓ_2	ℓ_1	ℓ_{21}
Generalization score	-57.1	33.1	38.8	43.0	40.6	41.5	41.6	41.8	45.6
Filling factor	100%	100%	100%	45%	100%	100%	100%	60%	8%
Communities	6	5	5	9	9	8	7	9	16
Modularity	.07	.07	.12	.25	.23	.23	.18	.32	.60

Reference:

G. Varoquaux *et al.*, Brain covariance selection: better individual functional connectivity models using population prior, Adv. NIPS 2010

http://books.nips.cc/nips23.html

Subject-level edge values

Atlas used: poster 335

Segregation into functional networks

Modularity: partitioning the graph in functional *communities* to maximize the ratio of connections inside/across clusters

Graph cut algorithm similar to normalized cuts Communities of sparse (ℓ_{21}) graphs separate functional networks

