1.2.2. Basic types¶
1.2.2.1. Numerical types¶
Tip
Python supports the following numerical, scalar types:
Integer: | >>> 1 + 1
2
>>> a = 4
>>> type(a)
<type 'int'>
|
---|---|
Floats: | >>> c = 2.1
>>> type(c)
<type 'float'>
|
Complex: | >>> a = 1.5 + 0.5j
>>> a.real
1.5
>>> a.imag
0.5
>>> type(1. + 0j)
<type 'complex'>
|
Booleans: | >>> 3 > 4
False
>>> test = (3 > 4)
>>> test
False
>>> type(test)
<type 'bool'>
|
Tip
A Python shell can therefore replace your pocket calculator, with the
basic arithmetic operations +
, -
, *
, /
, %
(modulo)
natively implemented
>>> 7 * 3.
21.0
>>> 2**10
1024
>>> 8 % 3
2
Type conversion (casting):
>>> float(1)
1.0
Warning
Integer division
In Python 2:
>>> 3 / 2
1
In Python 3:
>>> 3 / 2
1.5
To be safe: use floats:
>>> 3 / 2.
1.5
>>> a = 3
>>> b = 2
>>> a / b # In Python 2
1
>>> a / float(b)
1.5
Future behavior: to always get the behavior of Python3
>>> from __future__ import division
>>> 3 / 2
1.5
Tip
If you explicitly want integer division use //
:
>>> 3.0 // 2
1.0
Note
The behaviour of the division operator has changed in Python 3.
1.2.2.2. Containers¶
Tip
Python provides many efficient types of containers, in which collections of objects can be stored.
Lists¶
Tip
A list is an ordered collection of objects, that may have different types. For example:
>>> colors = ['red', 'blue', 'green', 'black', 'white']
>>> type(colors)
<type 'list'>
Indexing: accessing individual objects contained in the list:
>>> colors[2]
'green'
Counting from the end with negative indices:
>>> colors[-1]
'white'
>>> colors[-2]
'black'
Warning
Indexing starts at 0 (as in C), not at 1 (as in Fortran or Matlab)!
Slicing: obtaining sublists of regularly-spaced elements:
>>> colors
['red', 'blue', 'green', 'black', 'white']
>>> colors[2:4]
['green', 'black']
Warning
Note that colors[start:stop]
contains the elements with indices i
such as start<= i < stop
(i
ranging from start
to
stop-1
). Therefore, colors[start:stop]
has (stop - start)
elements.
Slicing syntax: colors[start:stop:stride]
Tip
All slicing parameters are optional:
>>> colors
['red', 'blue', 'green', 'black', 'white']
>>> colors[3:]
['black', 'white']
>>> colors[:3]
['red', 'blue', 'green']
>>> colors[::2]
['red', 'green', 'white']
Lists are mutable objects and can be modified:
>>> colors[0] = 'yellow'
>>> colors
['yellow', 'blue', 'green', 'black', 'white']
>>> colors[2:4] = ['gray', 'purple']
>>> colors
['yellow', 'blue', 'gray', 'purple', 'white']
Note
The elements of a list may have different types:
>>> colors = [3, -200, 'hello']
>>> colors
[3, -200, 'hello']
>>> colors[1], colors[2]
(-200, 'hello')
Tip
For collections of numerical data that all have the same type, it
is often more efficient to use the array
type provided by
the numpy
module. A NumPy array is a chunk of memory
containing fixed-sized items. With NumPy arrays, operations on
elements can be faster because elements are regularly spaced in
memory and more operations are performed through specialized C
functions instead of Python loops.
Tip
Python offers a large panel of functions to modify lists, or query them. Here are a few examples; for more details, see https://docs.python.org/tutorial/datastructures.html#more-on-lists
Add and remove elements:
>>> colors = ['red', 'blue', 'green', 'black', 'white']
>>> colors.append('pink')
>>> colors
['red', 'blue', 'green', 'black', 'white', 'pink']
>>> colors.pop() # removes and returns the last item
'pink'
>>> colors
['red', 'blue', 'green', 'black', 'white']
>>> colors.extend(['pink', 'purple']) # extend colors, in-place
>>> colors
['red', 'blue', 'green', 'black', 'white', 'pink', 'purple']
>>> colors = colors[:-2]
>>> colors
['red', 'blue', 'green', 'black', 'white']
Reverse:
>>> rcolors = colors[::-1]
>>> rcolors
['white', 'black', 'green', 'blue', 'red']
>>> rcolors2 = list(colors)
>>> rcolors2
['red', 'blue', 'green', 'black', 'white']
>>> rcolors2.reverse() # in-place
>>> rcolors2
['white', 'black', 'green', 'blue', 'red']
Concatenate and repeat lists:
>>> rcolors + colors
['white', 'black', 'green', 'blue', 'red', 'red', 'blue', 'green', 'black', 'white']
>>> rcolors * 2
['white', 'black', 'green', 'blue', 'red', 'white', 'black', 'green', 'blue', 'red']
Tip
Sort:
>>> sorted(rcolors) # new object
['black', 'blue', 'green', 'red', 'white']
>>> rcolors
['white', 'black', 'green', 'blue', 'red']
>>> rcolors.sort() # in-place
>>> rcolors
['black', 'blue', 'green', 'red', 'white']
Methods and Object-Oriented Programming
The notation rcolors.method()
(e.g. rcolors.append(3)
and colors.pop()
) is our
first example of object-oriented programming (OOP). Being a list
, the
object rcolors owns the method function that is called using the notation
.. No further knowledge of OOP than understanding the notation . is
necessary for going through this tutorial.
Discovering methods:
Reminder: in Ipython: tab-completion (press tab)
In [28]: rcolors.<TAB>
rcolors.append rcolors.index rcolors.remove
rcolors.count rcolors.insert rcolors.reverse
rcolors.extend rcolors.pop rcolors.sort
Strings¶
Different string syntaxes (simple, double or triple quotes):
s = 'Hello, how are you?'
s = "Hi, what's up"
s = '''Hello, # tripling the quotes allows the
how are you''' # string to span more than one line
s = """Hi,
what's up?"""
In [1]: 'Hi, what's up?'
------------------------------------------------------------
File "<ipython console>", line 1
'Hi, what's up?'
^
SyntaxError: invalid syntax
The newline character is \n
, and the tab character is
\t
.
Tip
Strings are collections like lists. Hence they can be indexed and sliced, using the same syntax and rules.
Indexing:
>>> a = "hello"
>>> a[0]
'h'
>>> a[1]
'e'
>>> a[-1]
'o'
Tip
(Remember that negative indices correspond to counting from the right end.)
Slicing:
>>> a = "hello, world!"
>>> a[3:6] # 3rd to 6th (excluded) elements: elements 3, 4, 5
'lo,'
>>> a[2:10:2] # Syntax: a[start:stop:step]
'lo o'
>>> a[::3] # every three characters, from beginning to end
'hl r!'
Tip
Accents and special characters can also be handled in Unicode strings (see https://docs.python.org/tutorial/introduction.html#unicode-strings).
A string is an immutable object and it is not possible to modify its contents. One may however create new strings from the original one.
In [53]: a = "hello, world!"
In [54]: a[2] = 'z'
---------------------------------------------------------------------------
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment
In [55]: a.replace('l', 'z', 1)
Out[55]: 'hezlo, world!'
In [56]: a.replace('l', 'z')
Out[56]: 'hezzo, worzd!'
Tip
Strings have many useful methods, such as a.replace
as seen
above. Remember the a.
object-oriented notation and use tab
completion or help(str)
to search for new methods.
See also
Python offers advanced possibilities for manipulating strings, looking for patterns or formatting. The interested reader is referred to https://docs.python.org/library/stdtypes.html#string-methods and https://docs.python.org/library/string.html#new-string-formatting
String formatting:
>>> 'An integer: %i; a float: %f; another string: %s' % (1, 0.1, 'string')
'An integer: 1; a float: 0.100000; another string: string'
>>> i = 102
>>> filename = 'processing_of_dataset_%d.txt' % i
>>> filename
'processing_of_dataset_102.txt'
Dictionaries¶
Tip
A dictionary is basically an efficient table that maps keys to values. It is an unordered container
>>> tel = {'emmanuelle': 5752, 'sebastian': 5578}
>>> tel['francis'] = 5915
>>> tel
{'sebastian': 5578, 'francis': 5915, 'emmanuelle': 5752}
>>> tel['sebastian']
5578
>>> tel.keys()
['sebastian', 'francis', 'emmanuelle']
>>> tel.values()
[5578, 5915, 5752]
>>> 'francis' in tel
True
Tip
It can be used to conveniently store and retrieve values associated with a name (a string for a date, a name, etc.). See https://docs.python.org/tutorial/datastructures.html#dictionaries for more information.
A dictionary can have keys (resp. values) with different types:
>>> d = {'a':1, 'b':2, 3:'hello'}
>>> d
{'a': 1, 3: 'hello', 'b': 2}
More container types¶
Tuples
Tuples are basically immutable lists. The elements of a tuple are written between parentheses, or just separated by commas:
>>> t = 12345, 54321, 'hello!'
>>> t[0]
12345
>>> t
(12345, 54321, 'hello!')
>>> u = (0, 2)
Sets: unordered, unique items:
>>> s = set(('a', 'b', 'c', 'a'))
>>> s
set(['a', 'c', 'b'])
>>> s.difference(('a', 'b'))
set(['c'])
1.2.2.3. Assignment operator¶
Tip
Python library reference says:
Assignment statements are used to (re)bind names to values and to modify attributes or items of mutable objects.
In short, it works as follows (simple assignment):
- an expression on the right hand side is evaluated, the corresponding object is created/obtained
- a name on the left hand side is assigned, or bound, to the r.h.s. object
Things to note:
a single object can have several names bound to it:
In [1]: a = [1, 2, 3] In [2]: b = a In [3]: a Out[3]: [1, 2, 3] In [4]: b Out[4]: [1, 2, 3] In [5]: a is b Out[5]: True In [6]: b[1] = 'hi!' In [7]: a Out[7]: [1, 'hi!', 3]
to change a list in place, use indexing/slices:
In [1]: a = [1, 2, 3] In [3]: a Out[3]: [1, 2, 3] In [4]: a = ['a', 'b', 'c'] # Creates another object. In [5]: a Out[5]: ['a', 'b', 'c'] In [6]: id(a) Out[6]: 138641676 In [7]: a[:] = [1, 2, 3] # Modifies object in place. In [8]: a Out[8]: [1, 2, 3] In [9]: id(a) Out[9]: 138641676 # Same as in Out[6], yours will differ...
the key concept here is mutable vs. immutable
- mutable objects can be changed in place
- immutable objects cannot be modified once created
See also
A very good and detailed explanation of the above issues can be found in David M. Beazley’s article Types and Objects in Python.