3.6.9.2. Demo PCA in 2DΒΆ
Load the iris data
from sklearn import datasets
iris = datasets.load_iris()
X = iris.data
y = iris.target
Fit a PCA
from sklearn.decomposition import PCA
pca = PCA(n_components=2, whiten=True)
pca.fit(X)
Project the data in 2D
X_pca = pca.transform(X)
Visualize the data
target_ids = range(len(iris.target_names))
from matplotlib import pyplot as plt
plt.figure(figsize=(6, 5))
for i, c, label in zip(target_ids, 'rgbcmykw', iris.target_names):
plt.scatter(X_pca[y == i, 0], X_pca[y == i, 1],
c=c, label=label)
plt.legend()
plt.show()
Total running time of the script: ( 0 minutes 0.054 seconds)