Navigation

  • next
  • previous |
  • Tutorial »
  • Collapse to compact view Collapse document to compact view

2. Understanding why a classifier predictsΒΆ

  • 2.1. Interpreting linear models
    • 2.1.1. Data on wages
    • 2.1.2. The challenge of correlated features
    • 2.1.3. Coefficients of a linear model
    • 2.1.4. The effect of regularization
    • 2.1.5. Stability to gauge significance
      • 2.1.5.1. With the lasso estimator
      • 2.1.5.2. With the ridge estimator
      • 2.1.5.3. Which is the truth?
        • 2.1.5.3.1. Conclusion on factors of wages?
  • 2.2. Interpreting random forests
    • 2.2.1. Data on wages
    • 2.2.2. Feature importance
    • 2.2.3. Meaning and Caveats
  • 2.3. Partial dependency plots
    • 2.3.1. All-in-one plotting function
    • 2.3.2. Lower-level partial_dependence function
  • 2.4. Black-box interpretation of models: LIME
    • 2.4.1. Regression on tabular data: factors of prices of houses

../../_images/sphx_glr_01_interpreting_linear_models_thumb.png

Interpreting linear models

../../_images/sphx_glr_02_interpreting_random_forests_thumb.png

Interpreting random forests

../../_images/sphx_glr_03_partial_dep_plots_thumb.png

Partial dependency plots

../../_images/sphx_glr_04_black_box_interpretation_thumb.png

Black-box interpretation of models: LIME

Download all examples in Python source code: 02_why_python.zip
Download all examples in Jupyter notebooks: 02_why_jupyter.zip

Gallery generated by Sphinx-Gallery

Navigation

  • next
  • previous |
  • Tutorial »
  • Collapse to compact view Collapse document to compact view
© Copyright . Created using Sphinx 1.6.7.