yearly report posts

2022, a new scientific adventure: machine learning for health and social sciences

A retrospective on last year (2022): I embarked on a new scientific adventure, assembling a team focused on developing machine learning for health and social science. The team has existed for almost a year, and the vision is nice shaping up. Let me share with you illustrations of where we …

2021 highlight: Decoding brain activity to new cognitive paradigms

Broad decoding models that can specialize to discriminate closely-related mental process with limited data

TL;DR

Decoding models can help isolating which mental processes are implied by the activation of given brain structures. But to support a broad conclusion, they must be trained on many studies, a difficult problem given …

2020: my scientific year in review

The year 2020 has undoubtedly been interesting: the covid19 pandemic stroke while I was on a work sabbatical in Montréal, at the MNI and the MILA, and it pushed further my interest in machine learning for health-care. My highlights this year revolve around basic and applied data-science for health.

Highlights …

2019: my scientific year in review

My current research spans wide: from brain sciences to core data science. My overall interest is to build methodology drawing insights from data for questions that have often been addressed qualitatively. If I can highlight a few publications from 2019 [1], the common thread would be computational statistics, from dirty …

2018: my scientific year in review

From a scientific perspective, 2018 [1] was once again extremely exciting thank to awesome collaborators (at Inria, with DirtyData, and our local scikit-learn team). Rather than going over everything that we did in 2018, I would like to give a few highlights: We published major work using machine learning to …

Our research in 2017: personal scientific highlights

In my opinion the scientific highlights of 2017 for my team were on multivariate predictive analysis for brain imaging: a brain decoder more efficient and faster than alternatives, improvement clinical predictions by predicting jointly multiple traits of subjects, decoding based on the raw time-series of brain activity, and a personnal …

Our research in 2016: personal scientific highlights

Year 2016 has been productive for science in my team. Here are some personal highlights: bridging artificial intelligence tools to human cognition, markers of neuropsychiatric conditions from brain activity at rest, algorithmic speedups for matrix factorization on huge datasets…


Artificial-intelligence convolutional networks map well the human visual system

Eickenberg et …