Latest tweets


Latest posts

Beyond computational reproducibility, let us aim for reusability


Scientific progress calls for reproducing results. Due to limited resources, this is difficult even in computational sciences. Yet, reproducibility is only a means to an end. It is not enough by itself to enable new scientific results. Rather, new discoveries must build on reuse and modification of the state ...

Scikit-learn Paris sprint 2017

Two week ago, we held in Paris a large international sprint on scikit-learn. It was incredibly productive and fun, as always. We are still busy merging in the work, but I think that know is a good time to try to summarize the sprint.

A massive workforce

We had a ...

Our research in 2016: personal scientific highlights

Year 2016 has been productive for science in my team. Here are some personal highlights: bridging artificial intelligence tools to human cognition, markers of neuropsychiatric conditions from brain activity at rest, algorithmic speedups for matrix factorization on huge datasets…

Artificial-intelligence convolutional networks map well the human visual system

Eickenberg et ...

Data science instrumenting social media for advertising is responsible for todays politics

To my friends developing data science for the social media, marketing, and advertising industries,

It is time to accept that we have our share of responsibility in the outcome of the US elections and the vote on Brexit. We are not creating the society that we would like. Facebook, Twitter ...

Unison 2.48 binaries for ARM

I have built static binaries of Unision 2.48 for ARM and x86 64bits

Better Python compressed persistence in joblib

New persistence in joblib enables low-overhead storage of big data contained in arbitrary objects

Of software and Science. Reproducible science: what, why, and how

At MLOSS 15 we brainstormed on reproducible science, discussing why we care about software in computer science. Here is a summary blending notes from the discussions with my opinion.

“Without engineering, science is not more than philosophy”    —   the community

How do we enable better Science? Why do we do software ...

Nilearn 0.2: more powerful machine learning for neuroimaging

After 6 months of efforts, We just released version 0.2 of nilearn, dedicated to making machine learning in neuroimaging easier and more powerful.

This release integrates the features of the july sprint, and more.


Better documentation ...

Job offer: data crunching brain functional connectivity for biomarkers

My research group is looking to fill a post-doc position on learning biomarkers from functional connectivity.

Scientific context

The challenge is to use resting-state fMRI at the level of a population to understand how intrinsic functional connectivity captures pathologies and other cognitive phenotypes. Rest fMRI is a promising tool for ...

MLOSS 2015: wising up to building open-source machine learning


The 2015 edition of the machine learning open source software (MLOSS) workshop was full of very mature discussions that I strive to report here.

I give links to the videos. Some machine-learning researchers have great thoughts about growing communities of coders, about code as a process and a deliverable ...